
Commercial Automation Using RTOS-Based Architecture

1Dr. Dipali Shende , 2Mrs. Vaishali Baste, 3Mrs. Shital More

1Department of E & TC, PCCOER,Ravet
2 Department of E & TC,SKNSCOE, Vadgaon

3 Department of E & TC, SIT Lonavala

ABSTRACT- The primary objective of this research is to

introduce an RTOS-based architecture for data transmission

between the host region and the industry area. RTOS is a
process that takes place between hardware and software. It

proposes a model which is used to monitor (Host Area) the

different physical values in industrial plants and its assembling

environment (Industry Area) by adding the functionality of an
RTOS. In an electronics manufacturing facility, temperature

control, security, and other factors are crucial. If an accident

occurs, productivity will suffer. With the aid of the Wireless
Module, a system built with an ARM processor, and a port of a

Real Time Operating System (RTOS) based on Linux, this

project seeks to address this issue by remotely monitoring the

temperature and other physical parameter levels of various
plant areas. Here in addition to detection of any faults, the

preventive action is also taken by using the control system

mechanism. These things will make the industry to operate
properly by preventing the accidents in real time and to increase

the level of production.
KEYWORDS—ARM-Advanced RIS C Machines; RTOS

-Real Time Operating System; RTLinux-Real Time Linux;

VB-Visual Basic

I. INTRODUCT ION

The RTOS-implemented system has the capacity to

multitask for task monitoring and task control. By modifying
the kernel, the system can also add more apps. Therefore,

system updates are also feasible as needed.[1][7] The most

recent ARM Controller offers more advanced applications
nowadays. The system can be connected through the wireless

sensor network for monitoring remote area. Due to warmth and

humidity, the electronics industry and others have recently

experienced significant problems. These problems include
increased board oxidation and bridging, faulty soldering joints,

and solder component flaws. Through these parameters, the

environment, in particular a few devices like desiccators and
solder paste refrigerators for storing paste and bare PCBs,

respectively, also has to be controlled. In order to increase a

machine's efficiency, several factories try to keep the

temperature under control. However, doing so can result in
unanticipated accidents, poor product quality, and other

problems. Microcontroller-based interfaces and the monitoring

and control system they enable are more expensive and less
effective.[2][8] Also the response of the system is late which

may sometimes lead to catastrophe. That means a real time

response is missing part. Considering all these parameters the
cost, efficiency, durability, reliability of such

system will not be optimum. So, a change in the existing system

is needed. Real Time Linux (RTLinux) can be ported to the

ARM platform so that the system can be implemented. The
RTOS-implemented system has the capacity to multitask for

task monitoring and task control. By modifying the kernel, the
system can also add more apps. Therefore, system updates are

also feasible as needed. The most recent ARM Controller offers

more advanced applications nowadays. For monitoring a

remote location, the system can be connected via a wireless
sensor network. For the ARM Controller, RTLinux is a pre-

emptive, hard real-time deterministic multitasking kernel.

RTLinux can run additional jobs by applying patches in
accordance with our needs. RTLinux manages memory, time,

and inter-process communication (using semaphores, message

queues, and mailboxes). By gathering data from perceived

values of the electronics manufacturing sectors under the
direction of engineers, it helps to monitor and control the

environment. The system's entire architecture is based on three

categories: communication protocols, software details, and
hardware specifics. The RTOS-implemented system has the

capacity to multitask for task monitoring and task control. By

modifying the kernel, the system can also add more apps.[3][9]

II. CURRENT COMMERCIAL AUTOMATION

SCENARIO

Globally, the new phrase The economy is quickly picking

up speed. The industrial sector, which includes the automotive

industry, has been altered and moulded by this new, disruptive

technology, which has lately discovered its growth curve.

Following Industry 4.0, this business era is seen as a collection

of ICTs (information and communications technologies) and

digitally enabled technologies. These include advancements in

manufacturing machinery, intelligent goods, data tools, and

analytics that make use of the Internet of Things (which can

include, among other things, 3-D printing, prototypes,

connected cars, product lifecycle management, and cyber

physical production systems).[4][10]

 The Government of India is giving the Indian

automotive industry a boost and a push as it emphasises and

concentrates on introducing new and revolutionary production

techniques into the country's manufacturing system while

putting ICT at the centre of development. Along with this, there

is also a strong emphasis on Make in India, the implementation

of GST, and FDI policies.[5][11]

III. LITERATURE SURVEY

 Applications for real-time software are common today

because they enable speedier completion of tasks, processes,

and activities. Real Time Operating Systems and the related

applications have been the subject of extensive research. A few

peer-reviewed journal papers are investigated. The following is

a summary of the papers' main findings and

recommendations.[6][12]

 We learn from the article "An intelligent architecture

for industrial automation using RTOS technology" published in

"International Journal of Application or Innovation in

Engineering & Management (IJAIEM)" [1],that the RTOS is

responsible for managing the orderly and controlled

distribution of these resources to users. Microprocessors,

transceivers, displays, and analogue to digital converters make

up this wireless sensor node. For the monitoring and

management of industrial processes, sensor nodes are

deployed. In the Master node, the sensing parameters can be

shown as a graph. The main goal of this technique is to lessen

the likelihood of collisions while also ensuring that timing

requirements for industrial applications' data transmission are

met.[7][13]

We learn how industrial parameters are tracked and handled

in accordance with their priority from the study "An RTOS
based Industrial Wireless Sensor Network using

Multiprocessor Support" that was published in "International

Journal of Computer Applications" (0975 - 8887)[2]. Data
acquisition nodes are used to gather data from various nodes

and transmit it wirelessly to the master node using the HART
protocol in order to reduce data collision. The master node will

carry out the work in accordance with the priority assigned to

the various parameters. To monitor and manage the operations
from the master node, several nodes can be used. Future

experiments will use alternative operating systems like Linux
and Neutrino.[14][15]

 In the article "Comparison of Open Source RTOSs
Using Various Performance Parameters" published in

"International Journal of Electronics Communication and

Computer Engineering" [3], that the scheduler is the most
crucial parameter because it controls how the entire system,

including hardware, functions. Extremely low interrupt and
event latencies are necessary for hard real-time systems. A

preventive system with an effective interrupt handling

mechanism is required for this. To achieve more challenging
real-time systems, the following generation of systems would

need further reduced latencies and quicker thread switching.
Out of the three RTOSs listed, RT Linux is the most adaptable

since it offers a wide range of functionalities without sacrificing

the core characteristics of an RTOS.[16]

 The following is taken from the article "Handling of
Priority Inversion Problem in RT Linux using Priority Ceiling
Protocol" [4] that was published in the "International Journal of
Advanced Engineering Research and Science (IJAERS)" We

learn that numerous approaches, including interrupt
disablement, priority inheritance protocol, priority remapping
method, priority exchange, and modified priority ceiling
protocol, can be employed to address the priority inversion

issue in RT-Linux. Locking the scheduler and prohibiting
context switches is the easiest solution. When the crucial zone
is relatively small, it is very easy and effective to reduce the
priority inversion problem. However, if the crucial zone is
relatively long, deadlines for jobs with higher priority would

frequently be missed. The design of the priority exchange
approach requires modification of the RT Linux kernel.

IV. PROPOSED METHODOLOGY

 The Industry Area and Host Area are the two primary

portions of the proposed architecture's Block Diagram. Industry

is represented by the transmitter side of the block diagram,

which includes an ARM Processor, various input sensors,

output indications like buzzers, GSM, motors, etc., and CC2500

for data transmission to the PC. The Host area, also known as

the receiver side, uses a CC2500 to receive data from the PC

side.

 Each unit in the industrial sector needs to

communicate with the ARM processor in order to measure real-

time readings and take appropriate action. Both analogue and

digital sensors are depicted. The LPC2148's integrated ADC

converts analogue values into usable digital values for quick

processing.

The Block Diagram of Industry Area is as shown in Fig.

Fig. 1 Industry Area

The Block Diagram of Host Area is as shown in Fig.

Fig. 2 Host Area

V. RTOS

(REAL TIME OPERAT ING SYST EM)
A well-known definition of a real time system is as follows:
“A real-time system is one in which the timing of the results

generation determines whether the system is right in addition to
the logical outcome of the calculation.”

The definition states that there are two sorts of real-time
systems:-

Hard Real-Time:- The deadline is compulsory to be
fulfilled.

Soft Real-Time:- The deadline is expected to be fulfilled but
it is not always compulsory.

The concept of RTOS is not new. Different types of

RTOS’s are available in the market. But the selection of a

proper RTOS is essential to get the maximum throughput. If an
industrial application is considered, then low latency, fast task

solving capabilities, hard real-time response, kernel memory

specifications, multiprocessor support, inter-process

communication mechanism, power requirements and cost are
the major concerns.

By keeping in mind the above mentioned points, a real time
version of Linux is selected, it is known as RTLinux. A hard

real-time OS is RTLinux. The pre-emptive design of the Linux
thread ensures that non-real-time actions never cause real-time
interrupts to be postponed. Shared memory allows real-time

threads to communicate with one another. This enables the
system to support all currently available Linux applications.

The user can also perform tasks that combine real-time and
delayed chores. All Linux services, including networking,

graphics, windowing systems, data analysis software, Linux
device drivers, and the common POSIX API, are available to
RTLinux thanks to the utilisation of shared memory.

Fig. 3 Role of the RTLinux Kernel

 The real-time operating system (RTOS) market lacked
an effective, open source RTOS, thus the RT Linux project set
out to provide one. The Linux Kernel offered a reliable
foundation for achieving this objective. Linux already had a
sizable user base and a substantial body of code. The Linux
kernel is effective, open, and available without charge. Using
the Linux kernel is practical, but it has drawbacks because
Linux is a time-sharing operating system. This indicates that
the interrupt latency, timing, and scheduling do not match
RTOS standards. Inter-process communication is another issue
brought on by the RT Linux kernel implementation.

Hard real-time OS introduced by RTAI appears to integrate

some of the greatest elements of the other types. The system
does this by using five complementing components. The first is

the hardware abstraction layer (HAL), which offers a hardware
interface for a hard real-time core and supports Linux. The

second step involves integrating the new task management
system into the current OS using the Linux compatibility layer,

which interfaces with the Linux OS. This is an important step
since hard real-time task management algorithms can differ

greatly from those employed in a general purpose OS.
Additionally, this layer enables the current OS to accept the new

management system without detecting a change, enabling

The RT kernel and the common Linux kernel are
intended to cohabit under RT Linux. The Linux
kernel and non-RT processes continue to function
normally in the absence of any RT processes on the
system, with no interference from the RT kernel. The
conventional Linux kernel typically does all that can
be done in Linux, putting as little stress as possible
on the RT kernel. The RT kernel pre-empts the Linux

kernel and assumes control when an RT task enters
the system. Data structures allow the RT kernel and
the Linux kernel to communicate. This enables the
inclusion of both real-time and non-real-time
functionalities in programmes. Real-time interrupts
are handled solely by the RT scheduler, while non-
real-time interrupts are managed by the Linux kernel
with the RT kernel's permission. The Linux kernel is
used to manage all hardware interactions.

Fig. 4 Data Flow in an Application

The screenshots for the RTLinux coding are shown below:

Fig. 5 A simple Hello Program

Fig. 6 First Step

Fig. 7 Second Step

Fig. 8 Third Step

Fig. 9 Task File

VI. HARDWARE AND SOFT WARE

DESIGN

The main hardware of this project comprises of the ARM

controller LPC 2148. A member of the RISC (reduced

instruction set computer) family of CPUs, an ARM processor
was created by Advanced RISC Machines (ARM). 32-bit and

64-bit RISC multi-core processors are produced by ARM. RISC

processors are made to execute fewer different kinds of
computer instructions, allowing them to run faster and handle

more millions of instructions per second (MIPS). RISC
processors deliver exceptional performance at a small fraction

of the power consumption of CISC (complex instruction set

computing) devices by eliminating unnecessary instructions
and streamlining paths.

Fig. 10 ARM LPC2148 Board

The hardware requirements involves the ARM controller,
different types of sensors like temperature sensor, gas sensor,
PIR sensor and fire sensor, GSM, DC Motor, buzzer, CC2500,
etc.

Software Flow:

 S TAR

START T

Te mp M on i to r LPG Monitor

 Us ing C C2500 S end

 Temp to PC

If N

 o

LPG

 Dete

 ct

 Update Excel sheet

 Regulator

 ON

Y

 e

 If Buzz er O N

 Temp

 High

 Fan OFF

 Regulator OFF,

S end S MS

F an ON

END END

START START

Fire Monitor
Movement Detection

If Fire No

Detect

If Detect

Pump OFF
Ye

Relay through Pump ON

Buzzer ON, Send SMS

Send SMS through GSM

END

END

Visual Basic and Environment:

 You may create Windows (GUI) apps with the use of

a tool called Visual Basic. The user is able to recognise the

applications by their appearance. Because Visual Basic is

event-driven, code sits idle until it is required to react to an

event (such as a button press or menu option). The control

system for Visual Basic is an event processor. Prior to the

detection of an event, nothing occurs. The event procedure (the

code associated with the observed event) is then run. The event

processor then regains control of the programme.

Fig. 11 Screenshot of the form in VB

VII.OBSERVATIONS AND RESULTS

In the results, we can see that the four sensors work as four
tasks and then multitasking operation takes place. The
controlling action takes place whenever the corresponding
sensor gets a stimulus. The final proposed model is shown by
figure below.

Fig. 12 Proposed Model

The GUI is developed by using Microsoft Visual Basic 6.0.
The readings obtained from temperature sensor is continously
updated in the excel sheet. These values are sent from the plant
to the host area which is at a remote location using CC2500.
The scrrenshot of Visual Basic output is as follows.

Fig. 13 Excel file showing temperature reading

VIII.CONCLUSION AND FUT URE SCOPE

The decomposed block diagram is developed on hardware
and software simultaneously. The RTLinux kernel is developed
and tested for suitability of industrial applications. A User
Interface using Visual Basic is developed, so that the

controller can monitor the activities in an industry from a

remote location. CC2500 proves to be a convenient method to
transmit the data to the PC Side. Through the use of GSM, the

controller can be alerted, so that timely action can be taken
place if any of the sensor changes its value. Waterfall model

proved to be an efficient algorithm to develop this project. In
the future, the real data from sensors can be sent through

network and displayed on demand through web server
interfaced on board. Basically there is a variety of web page

formats like PHP, .Net, HTML Page. Also, to display direct
reading, board should support PHP based web page. This page

can be accessed through remote terminal for controlling
purpose. If external and internal memory size increases then

database can be created to send the readings of sensors. For this,
database support can be added to the kernel.

REFERENCES

[1] R. V. M. Silambarasan D, "Handling of Priority Inversion
Problem in RT Linux using Priority Ceiling Protocol,"
International Journal of Advanced Engineering Research
and Science (IJAERS), vol. 3, no. 6, p. 6, 2016.

[2] A. K. T. R. Aswini Bavani, "An RTOS based Industrial
Wireless Sensor Network using Multiproces or Support,"
International Journal of Computer Applications (0975 –
8887), vol. 114, no. 4, p. 4, 2015.

[3] K. A. V. B. Rahul Sandeep, "An intelligent architecture
for industrial automation using RTOS technology,"
International Journal of Application or Innovation in
Engineering & Management (IJAIEM), vol. 3, no. 10, p.
6, 2014.

[4] D. N. N. M. Sanjay Deshmukh, "Comparison of Open
Source RTOSs Using Various Performance Parameters,"
International Journal of Electronics Communication and
Computer Engineering, vol. 2, no. 4, p. 6, 2013.

[5] M. Barabanov, A Linux based Real Time Operating
System, Socorro, New Mexico: New Mexico Institute of
Mining and Technology, 1997.

[6] J. P. Sam Siewert, Real-Time Embedded Systems and
Components with Linux and RTOS, Dulles, VA:
MERCURY LEARNING AND INFORMATION.

[7] Shende, Dipali, and Yogesh S. Angal. "Sewage water
management and healthcare monitoring in IoT using
Optimized deep residual network." Journal of
Experimental & Theoretical Artificial
Intelligence (2024): 1-24.

[8] Shende, Mrs Dipali K., and V. V. Deotare. "Internet of
things enabled water quality monitoring and alert system
using improved multicast routing algorithm." Design
Engineering (2021): 13620-13629.

[9] Shende, Dipali K., Yogesh S. Angal, and S. C. Patil. "An
iterative CrowWhale-based optimization model for
energy-aware multicast routing in IoT." International
Journal of Information Security and Privacy (IJISP) 16.1
(2022): 1-24.

[10] Shende, Dipali K., S. S. Sonavane, and Yogesh Angal. "A
comprehensive survey of the routing

[11] Shende, D. K., and S. Smriti. "Detection of water
contamination with respect to different parameters using
IOT based multicast routing." J. Sci. Comput. 9 (2020):
1524-2560.Practice and Experience 21.2 (2020): 203-
216.

[12] Shende, D. K., and Suryavanshi Nikhil. "IoT based

geographic multicast routing protocol with DPA through
WSN." International Journal of Creative Research
Thoughts 6.2 (2018): 578-584.

[13] Shende, Dipali K., and S. S. Sonavane. "CrowWhale-
ETR: CrowWhale optimization algorithm for energy and
trust aware multicast routing in WSN for IoT
applications." Wireless Networks 26 (2020): 4011-4029.

[14] Shende, D. K., and S. Smriti. "Detection of water
contamination with respect to different parameters using
IOT based multicast routing." J. Sci. Comput. 9 (2020):
1524-2560.

[15] Shende, D. K., Sonawane S., “Multicast Routing for
Internet of Things: A Literature Review and Challenges”.
In IJIACS, Volume 7, Issue 3,(2018): ISSN: 2347-8616

[16] Shende, D. K., Kale S, “Bandicoot: Drain ,Clog Detection
and Prevention to support Swatch Bharat Abhiyan” , in
AEGAEUM JOURNAL-UGC Care Approved Group II,
Volume 8,Issue 6 (2020)

